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Abstract:

The objective of this analysis is to demonstrate the feasibility of using a composite L2 Soil Moisture and Ocean Salinity (SMOS)
soil moisture product for determining drought conditions by taking advantage of its spatial and temporal resolutions. The work
investigates the potential relationships between soil moisture anomalies and two drought indices, the Standardized Precipitation
Index and the Standardized Precipitation Evapotranspiration Index, both calculated on a ten-day basis. As the two drought
indices can be applied to different time scales for precipitation series, the influence of time scale on the drought definition is also
studied. The anomalies were calculated both for the in situ soil moisture by REMEDHUS (Soil Moisture Measurement Stations
Network, Spain) and from the SMOS L2 soil moisture product. In general, in situ anomalies exhibit higher correlation
coefficients for the drought indices than those of SMOS, except for the shortest time scale. As expected, the short-term remotely
sensed anomalies have a high response to precipitation events. This effect may be due to the greater sensitivity of SMOS data to
rainfall, as well as to the spatial averaged nature of its observations. The optimal time scale was 1month for the SMOS values
and ranged between 30 and 50 days for the in situ values. The use of evapotranspiration in the calculation of the indices did not
improve the description of the anomalies. The relationship between indices and soil moisture conditions provides encouraging
results. Indeed, this method generates preliminary but valuable insights for future satellite products. Copyright © 2014 John
Wiley & Sons, Ltd.
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INTRODUCTION

Soil moisture is a key component of the hydrological cycle,
which determines run-off generation and groundwater
recharge (Western et al., 2002). It also largely affects the
functioning of the ecosystem (Sitch et al., 2003) as well as
forest activity and growth (Pastor and Post, 1986). In the
context of agriculture, soil moisture influences the yield
production as excessive and scarce soil moisture can
expose plants to oxygen deficiencies and drought stresses,
respectively (Raich and Tufekcioglu, 2000). For these
reasons, the accurate estimation of soil moisture variability
as a function of time and space is highly relevant to several
hydrological, ecological and agricultural applications.
Great efforts have been made to estimate soil moisture,
and due to the difficulties inherent to in situmeasurements,
the remote sensing approach has become a convincing
alternative because of its spatial and temporal coverage.
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The strategy involves developing new remote sensing soil
moisture products to enhance future drought monitoring.
Because of the difficulty of extending point-based soil
moisture observations to larger areas, microwave remote
sensing represents an alternative approach for describing on
a continuous spatial basis the soil water content (Schmugge
et al., 2002). Spatial passive missions operating at
frequencies above 5GHz, such as the Microwave Imager
from the Tropical Rainfall Measuring Mission (Gao et al.,
2006), among others, can be used for soil moisture
observations, even though none of these missions are
dedicated soil moisture missions (Rüdiger et al., 2009).
Active microwave products from instruments measuring
radar backscatter, such as the Advanced Scatterometer
onboard METOP-A, its predecessor scatterometer on board
the European Remote Sensing Satellite (ERS-1&2) and the
ENVISAT Advanced Synthetic Aperture Radar, also
demonstrate the relevance of surface soil moisture retrieval
data from space that can be used by the scientific community
(Wagner et al., 1999; Bartalis et al., 2007; Rüdiger et al.,
2009; Albergel et al., 2012).
Satellite missions focusing on soil moisture observa-

tions based on the most suitable L-band wavelength for
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soil moisture retrieval are currently underway, including
the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al.,
2010; Kerr et al., 2012; Mecklenburg et al., 2012) from
the European Space Agency (ESA) and the future Soil
Moisture Active Passive from National Aeronautics and
Space Administration (Entekhabi et al., 2010).
After the end of its commissioning phase inMay 2010, the

SMOSmission is being continuously providing data products
for more than 2years. The hydrological community is taking
advantage of the level-2 soil moisture product, which is also
being used to produce a series of composite L3 soil moisture
products at different temporal and spatial resolutions (Piles
et al., 2011). The next generation of L4 products includes
end-level products obtained using a combination of SMOS
data as well as physical or statistical models or other remote
sensors. One example of such products is the fire risk maps
from the SMOS Barcelona Expert Center (http://www.smos-
bec.icm.csic.es/fire_risk_maps).
Some studies have validated the SMOS-derived soil

moisture product L2 using in situ data (dall’Amico et al.,
2012; Jackson et al., 2012; Lacava et al., 2012; Sánchez
et al., 2012a). Nevertheless, the SMOS validation is difficult,
given the local character of soil moisture measurements used
for validation, which may not exhibit the high spatial
variability, as well as the low spatial resolution of the SMOS
data, wherein soil moisture conditions are averaged over
large areas. Current long-term consistent soil moisture time
series, based on active and passive data, as the Soil Moisture
of the Climate Change Initiative project from the ESA could
be a useful alternative to compare remotely sensed soil
moisture (Liu et al., 2012).
Another indirect approach for validation is the use of

indices obtained using meteorological parameters, which
summarizes the general variability of moisture conditions
in the region and exhibits a good correlation with soil
moisture measurements (Sims et al., 2002; Dai, 2011;
Vicente-Serrano et al., 2012). For example, a recent study
comparing SMOS-derived soil moisture spatial patterns
with the terrain, vegetation and climatic factors in the
REMEDHUS site in Spain (Sánchez et al., 2012b) showed
that the Antecedent Precipitation Index (Choudhury et al.,
1994) had a better match with the soil moisture spatial
distribution in comparison with the topographic attributes
or land use.
Following the suggestions of Albergel et al. (2012), a

soil moisture anomalies (SMA) analysis was performed in
order to evaluate the ability of SMOS and in situ datasets
to capture short-term scale soil surface water variations.
Because no equivalent data are available for comparison
with the satellite SMA, a comparison can be made by
using different definitions of soil moisture proxies, as
discussed by Champagne et al. (2011).
In this study, we utilized field soil moisture data

collected at the REMEDHUS site and meteorological
Copyright © 2014 John Wiley & Sons, Ltd.
drought indices to evaluate the SMOS SMA. Thus, our
research attempts to demonstrate the ability of SMOS L2
SMA to detect wet or dry conditions compared with
meteorological indices obtained by climate databases. Such
indices are widely used for quantifying and monitoring
drought conditions (Heim, 2002; Svoboda et al., 2002). The
potential of the SMOS-derived SMA composite for
quantifying soil moisture extreme conditions is powered
by the high temporal resolution and global spatial coverage
of the satellite data.
Although a variety of climate drought indices are available

(Sivakumar et al., 2010), two indices have been used in this
study: the Standardized Precipitation Index (SPI) (McKee
et al., 1993) and the Standardized Precipitation Evapotrans-
piration Index (SPEI) (Vicente-Serrano et al., 2010). The SPI
is only based on precipitation data, and it has been accepted
by the World Meteorological Organization as a reference
drought index because it is able to identify different types of
drought that are calculated on different time scales (Hayes
et al., 2011). The SPEI follows the same principle as the SPI,
but it combines data on precipitation and evapotranspiration
and exhibits a better relationship with hydrological variables,
such as soil moisture, than the SPI on a global scale (Vicente-
Serrano et al., 2012).
The main objective of this study is to demonstrate the

feasibility of using a composite L2 SMOS soil moisture
product for determining drought conditions by taking
advantage of its spatial and temporal resolutions. To do
this, we compared SMA from the SMOS L2 soil moisture
product and in situ soil moisture measurements with two
drought indices, the SPI and the SPEI.
STUDY AREA AND DATASET

The REMEDHUS network (Martínez-Fernández and
Ceballos, 2005; Sánchez et al., 2010) is located within
a 1300 km2 area (41.1°–41.5°N; 5.1°–5.7°W) (Figure 1).
This area is nearly flat (less than 10% slope), and it ranges
from 700 to 900m a.s.l. The climate is Continental–
Mediterranean, with approximately 400mm of average
annual precipitation. The mean temperature is 12 °C, with
long, cold winters and hot summers. The average annual
reference evapotranspiration for this period is 1025mm
according Food andAgriculture Organization-56 Penman–
Monteith method. The land cover class of all SMOS cells
in the retrieval is mainly vegetated soil (nominal land use:
low vegetation of grass and crops) for the purpose of this
study, which is in line with the chiefly land use in the
REMEDHUS area (Wagner et al., 2007). For this reason,
only 16 stations that fall within this category were used.
The monitoring network performs continuous soil

moisture measurements using Hydra probes (Stevens®
Water Monitoring System, Inc.) integrating over a depth
Hydrol. Process. 29, 373–383 (2015)
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Figure 1. Spatial distribution of weather and soil moisture stations over the Soil Moisture and Ocean Salinity discrete global grid cells covering
REMEDHUS. Only 16 REMEDHUS stations have been used. Land cover map is also shown
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of 0–5 cm. REMEDHUS provides a continuous measure-
ment of soil moisture each hour. The network and
database are managed using a remote data transfer system
(general packet radio services modems). This network,
together with intensive field campaigns, has shown high
performance in Cal/Val studies that utilize passive and
active microwave sensors for soil moisture retrieval
(Ceballos et al., 2005; Brocca et al., 2011; Sánchez
et al., 2012a). In addition, this network is a partner of the
International Soil Moisture Network (Dorigo et al., 2011).
Data from five automatic weather stations within the

network (Cañizal, Carrizal, Granja, Villamor and Toro)
have been used as the basis for drought indexes (Table I
and Figure 1). The Matacán station belongs to the Spanish
Meteorological Agency weather network and is located
40 km away from the study area. Because Matacán
provided a historical dataset (65 years), it allowed for a
more complete analysis of the statistical distribution of
the temporal series. The REMEDHUS weather station
data span much shorter periods (Table I). The 10-day
precipitation series of Matacán exhibited correlation
Table I. Locations and precipitation o

Weather
Station

Coordinates (WGS84)

Long, Lat

Cañizal �5.364855, 41.189362
Carrizal �5.529793, 41.285543
Granja �5.367322, 41.310975
Toro �5.385031, 41.508399
Villamor �5.601760, 41.236445
Mean —
Matacán �5.498333, 40.959444

Copyright © 2014 John Wiley & Sons, Ltd.
coefficients in the range of 0.81–0.92 with the weather
stations located in REMEDHUS, whereas the 10-day
series of reference evapotranspiration between the
Matacán and the REMEDHUS stations exhibited corre-
lations in the range of 0.96–0.99.
SMOS L2 soil moisture

The SMOS L2 product has a nominal average spatial
resolution of 43 km (Barre et al., 2008). However, L2
contains geolocated products generated by the ESA on
the Icosahedral Snyder Equal Area projection and
resampled over a discrete global grid (DGG) with fixed
latitude and longitude coordinates for the centre of each
grid cell, as identified by a Grid_Point_ID and equispaced
by 15 km. The temporal sampling of themission is 1–3 days,
with morning and evening overpasses (ascending and
descending, respectively). Each grid node has a numeric
identifier that is used in the subsequent analysis. Even
though the DGG cells are hexagonal, a rectangular grid in
the following figures is considered for simplicity.
f weather stations used in this work

Precipitation (mm)
Period of

data2010 2011

480.4 297.0 2007–2011
555.8 315.4 2010–2011
414.2 228.8 2007–2011
438.2 248.5 2007–2011
591.0 319.4 2001–2011
473.2 266.8 —
414.7 246.8 1945–2011

Hydrol. Process. 29, 373–383 (2015)
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Soil Moisture and Ocean Salinity L2 soil moisture data
for all of 2010 and 2011 were used for this study, which
includes 430 days with data. The data reported herein are
from the last reprocessing at the time of our analyses, i.e.
the reprocessed MIR_SMUDP2 (L2 Soil Moisture User
Data Product) dataset version 5.01. This product has been
generated with processor version 5.01, which includes data
acquired from 12 January 2010 to 31 December 2011. The
use of a unique version of reprocessing guarantees similar
expected quality standards for the entire dataset. To
evaluate the quality of the L2 data, all files contain
information about the quality of each retrieved parameter
(data quality index which is the theoretical retrieval
a posteriori standard deviation). Data with a data quality
index value above a threshold of 0.06m3m�3 were
excluded and led to the filtering of obvious outliers
(dall’Amico et al., 2012). This limit is less constraining
than that used in other works (e.g.Wanders et al., 2012) but
resulted useful for filtering radio frequency interference
(RFI) disturbances in a period with a large RFI uncertainty
in the area. In addition, data have also been filtered for
RFIs, which adversely affect the SMOS data. Data
degradation due to RFIs is one of the major sources of
deterioration in the quality of SMOS data (Mecklenburg
et al., 2012). The possibility of having RFI-corrupted data
has been previously assessed using the Confidence Flags of
the MIR_ SMUDP2 data type. The RFI flags allowed one
to filter out the measurements acquired on REMEDHUS
that exceed the user-given threshold of probability of
having RFIs, which in turn is computed using the ancillary
data from the AUX_DGGRFI file (Current RFI Probability
at the DGG point from the L2 Soil Moisture product). The
valid range of this probability is [0.0, 1.0]. Values >1.0
could indicate possible data corruption in the
AUX_DGGRFI, as stated in the SMOS Level 2 and
Auxiliary Data Products Specifications.
Once compared with the in situ observations, no clear

difference in the performance between morning and
evening overpasses could be detected in the SMOS data.
To increase the temporal resolution of the product, both
ascending and descending overpasses data were used in
the SMOS L2 series.
Figure 2. Daily in situ and Soil Moisture and Ocean Salinity soil moisture a

Copyright © 2014 John Wiley & Sons, Ltd.
METHODS

SMA

In a first step, a simple soil moisture comparison was
performed between soil moisture data sets (Figure 2). In situ
and L2 data were normalized (between 0 and 1) using their
own maximum and minimum values over the period of study
(Albergel et al., 2012). This procedure can prevent differences
in the datasets that manifest as differences in texture and in
soil depth measured by satellite and in situ sensors.
To capture the short-term scale soil surface variations,

anomaly time series were computed for both datasets. The
SMA time series were computed using a ten-day-moving
window for the soil moisture value. After trying various
periods to evaluate the depiction of drought, a ten-day
interval was chosen for the SMA calculation, as it appeared
to the best choice in terms of time resolution of the drought
indices. When shorter intervals were used, the robustness of
the statistical fit decreased. On the other hand, using longer
intervals did not seem appropriate due to the limited period of
the SMOS dataset. To calculate the SMA, the average and
standard deviation were calculated from the full data record
for each set of in situ and satellite observation data sets,
covering two full years. Next, each observation (from in situ
or satellite) was normalized to the average and standard
deviation of that data set. This method (Crow et al., 2005;
Rüdiger et al., 2009) eliminates the effect of differences in
means and standard deviation between data sets and provides
a better estimate of the sensitivity to certain conditions than a
comparison of absolute or normalized values.
The SMA has been calculated only for the REMEDHUS

stations that coincide with the nominal land use within the
L2 product for the area (n=16), as well as for the 14 SMOS
DGG cells (Figure 1). The ten-day composite SMA both
from L2 and the in situ dataset was compared with the
drought indices described in the subsequent section.
The correlation test was reported as non-significant when
the p-value is greater than 0.05.

The SPI

The SPI was proposed by McKee et al. (1993) and has
been used more frequently during the two last decades
t REMEDHUS in 2010 and 2011. Daily mean precipitation is also shown

Hydrol. Process. 29, 373–383 (2015)
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(e.g. Hayes et al., 1999; Lloyd-Hughes and Saunders, 2002;
Vicente-Serrano, 2006a; Hirschi, 2011). The SPI is based on
the conversion of precipitation data to probabilities based on
long-term precipitation records computed on different time
scales. Probabilities are transformed into standardized series
with an average of 0 and a standard deviation of 1. Among
the different probability models used to fit the precipitation
series, the Pearson III distribution shows enhanced
adaptability to precipitation series at different time scales
(Guttman 1999; Vicente-Serrano 2006b; Quiring 2009).
Therefore, here we use the algorithm described by Vicente-
Serrano (2006b) to calculate the SPI values based on
the Pearson III distribution and L-moments approach to
obtain the distribution parameters. The SPI at a temporal
resolution of 10 days is calculated and compared with the
SMOS data. However, the time scale at which soil moisture
variability is responding to precipitation in the study
domain is not known a priori (e.g. in a region, soil moisture
may show high frequency variability and respond
immediately to precipitation events, whilst soil moisture
in other region may show a slow response and respond
better to the cumulative precipitation recorded in a period
of n days or months). Consequently, antecedent rainfall of
longer time intervals has been considered in the calculation
of the SPI index. Time scales from 10 days to 48months
have been incorporated in the analysis. Given the short
period of climatic data available in the REMEDHUS
Network (11 years), the Matacán station (65 years of data)
was used to obtain the Pearson III probability distribution
parameters, which were applied to the series of the
REMEDHUS Network stations.

The SPEI

Themain criticism of the SPI is that its calculation is based
only on precipitation data. The index does not consider other
variables that can influence drought severity, mainly the
evapotranspiration. It is widely recognized that evapotrans-
piration affects soil moisture availability and, consequently,
the vegetation water content, which directly affects
agricultural droughts. The SPEI, based on precipitation
and reference evapotranspiration (Et0), includes the concept
of atmospheric water demand in the calculation of a multi-
scalar drought index (Vicente-Serrano et al., 2010). The
SPEI is based on a monthly climatic water balance
(precipitation minus reference evapotranspiration), which
is adjusted using a three-parameter log–logistic distribution.
The values are accumulated at different time scales, using
the same approach as with the SPI, and converted to
standard deviations with respect to the average values.
Reference evapotranspiration data are obtained for each

weather station in REMEDHUS using the Penman–Monteith
approach (Allen et al., 1998), which is considered a reference
method by the International Commission for Irrigation, the
Food and Agriculture Organization of the United Nations
Copyright © 2014 John Wiley & Sons, Ltd.
and the American Society of Civil Engineers. The necessary
parameters for the application of this method were not
available in theMatacán station. Therefore, for data from the
Matacán station, we applied the empirical equation
formulated by Hargreaves and Samani (1985), which is
recommended for scarce datasets (Droogers and Allen,
2002). Correlations between the Et0 values obtained from
Hargreave’s and Penman–Monteith methods were very
good (correlation coefficient, R≈ 0.99) for all the stations,
meaning, it is possible to utilize the long-term parameters
necessary to calculate the SPEI from the Matacán station.
The SPEI was also obtained at a 10-day resolution and on a
time scale ranging from 10days to 48months.
Finally, for a quantitative comparison between drought

indices and SMA from the SMOS and in situ measurements,
thePearson’sR coefficientwas computed for each dataset pair.
The p-value was used to establish the statistical significance,
wherein the significance level of α=0.05 was considered
significant, although a p-value of 0.01 was also obtained.
RESULTS

SMOS vs in situ soil moisture measurements

Abrief analysis of the relationships between area-averaged
SMOS cells and in situ measurements was performed. The
area-averaged temporal evolution of the two soil moisture
datasets, together with the amount of precipitation, is
compared in Figure 2. The dynamic range of SMOS is
more severe than that of the in situ data, due to SMOS
lower penetration depth. Still, it demonstrates a marked
flashiness related to the rain events in the SMOS soil
moisture. The similarity between the SMOS-derived soil
moisture and the in situmeasurements, as well as the good
performance of the SMOS soil moisture in representing the
temporal variability of the soil moisture measurements, is
evident. However, an underestimation is observed in the
absolute SMOS soil moisture values. In addition, a higher
reactivity to precipitation events was observed in the
SMOS dataset in comparison with the in situ soil moisture
data. This SMOS sensitivity to rain events spurs the idea of
its comparison with the drought indices.
For the whole area, the mean correlation between in situ

and SMOS datasets during the period of study was 0.73
(RMSD= 0.042m3m�3, bias =�0.031m3m�3), which is
in line with a previous study on the SMOS validation in the
network (Sánchez et al., 2012a) and is in agreement with
the accuracy requirements of the mission for the soil
moisture product (RMSE< 0.04m3m�3).

SMOS and in situ SMA vs SPI and SPEI: time scale analysis

To determine the most suitable time scale for the
drought indices to represent the temporal variability of the
SMA, different time scales were selected, corresponding
Hydrol. Process. 29, 373–383 (2015)
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Figure 3. Correlation coefficients between the drought indices and soil
moisture anomalies along different time scales, for both Soil Moisture and
Ocean Salinity (SMOS) and in situ averaged data. Black, in situmeasurements;
grey, SMOS measurements; dots, Standardized Precipitation Evapotranspira-

tion Index (SPEI); triangles, Standardized Precipitation Index (SPI)
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to 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 and
120 days (i.e. these intervals of antecedent climate
conditions analysed). A temporal analysis was performed
using the five automatic weather stations in the
REMEDHUS network and considering the average of
the measurements. The comparison was also made using
the SMOS-averaged and the REMEDHUS-averaged SMA
(Table II), revealing the influence of antecedent climatic
conditions, using the correlations as a measurement of the
outstanding memory (persistence) of soil moisture.
Table II provides information about the correlations of

the different weather stations. A good fit was found in
terms of statistical significance for both datasets, as only
5% of the correlations have a p-value >0.05 for both
datasets. In general, higher correlations were obtained for
the in situ SMA with respect to the SMOS data. This is
likely due to the different penetration depths of SMOS
and the in situ probes. Stronger correlations are found for
the drought time scales of 30–60 days for the in situ SMA
and 20–40 days for the SMOS SMA. At these time scales,
the correlations tend to be similar between the SPI and
SPEI, with some differences between the weather
stations. These observations highlight the difficulty of
making in situ comparisons based on data collected on
very different spatial scales. The low values of Carrizal
station can be justified by the fact that its precipitation
series is not long enough to provide consistent calculations.
Figure 3 shows the correlation between the time series

of the 10-day SPI, SPEI, SMOS and the in situ SMA,
averaging the values across the entire REMEDHUS site.
Stronger correlations are recorded for drought time scales
of 30–60 days for the in situ SMA and between 30 and
50 days for the SMOS SMA. This confirms that soil
moisture variability is driven by antecedent climate
conditions and that the main soil moisture response is
not only related to the immediate weather conditions. For
Hydrol. Process. 29, 373–383 (2015)



Figure 4. Mean correlation coefficients between soil moisture anomalies (sort by standard deviations and soil moisture contents) and drought indices
along the different time scales
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time scales longer than 60 days, the response of the soil
moisture variability decreases noticeably. For the in situ
SMA, both SPI and SPEI correlations are stronger,
showing that differences between the SMOS and in situ
SMA correlations are not only influenced by the time
scales upon which maximum correlations are obtained but
also with the magnitude of the correlations. Nevertheless,
in both cases, the SPEI tends to exhibit higher correlations
than the SPI. The differences tend to be lower for the time
scales at which maximum correlations are recorded.
Finally, a comparison between each station and cell with

the average drought indices was performed (Figure 4). In
this figure, the values of the correlation (R) between SMA
and drought indices within the different time scales are
presented. The temporal pattern is clearer for the SMOS
series, showing that the correlation is worse for more than a
60-day time interval. This period may be indicative of the
time scale of precipitation extremes that the SMOS SMA
can capture. For each dataset, the attempt is to visualize if
the correlation is related to the soil moisture content and
standard deviation, i.e. if highest correlations are in
correspondence of low/high soil moisture contents or
standard deviations. For the in situ dataset, no appreciable
link was found. As seen in Figure 4, for the SMOS dataset,
there is a traceable similarity between the soil moisture data
and the standard deviation time patterns with respect to the
correlations with the indices. However, it must be noted
that this similarity is actually due to the scarce standard
variation and low averaged soil moisture content in the
SMOS series.
DISCUSSION AND CONCLUSIONS

This study compared the variability of in situ soil
moisture measurements, SMOS L2 surface soil moisture
and two drought indices based on climatic information
and revealed the utility of the SMOS products for
assessing the temporal variability of soil moisture on a
regional scale. Significant correlations between the
drought indices, in situ, and SMOS SMA were found.
As expected, higher correlations were obtained for the
in situ measurements relative to the SMOS dataset.
Nevertheless, independent of the dataset, both drought
indices were good proxies of the soil moisture variability.
The main novelty of our approach was the use of two

drought indices for comparison with the SMA. Given the
difficulty of performing robust soil moisture measure-
ments for long time series, very few studies have
compared drought indices with actual soil moisture
variability (Vicente-Serrano et al., 2012). The study was
executed using the REMEDHUS site (central Iberian
Peninsula), which contains high quality soil moisture and
meteorological observations. A statistically significant
Copyright © 2014 John Wiley & Sons, Ltd.
performance of the SMOS SMA for reproducing in situ
measurements was found, even though a slight underes-
timation was assumed in the use of current L2 processed
versions (dall’Amico et al., 2012; Dente et al., 2012;
Sánchez et al., 2012a). This good performance can be
supported by the presence of sparse and homogeneous
vegetation cover in the area, fitting the nominal class
proposed in the algorithm, and due to the limited
topographic effects in this area (Sánchez et al., 2012a).
The SPI and the SPEI exhibit better performance in

terms of reproducing the variability of the soil moisture
on a global scale (Vicente-Serrano et al., 2012). In our
case, after a previous attempt using the daily interval for
the calculation of these indices and the SMA, a ten-day
resolution was chosen to represent the in situ and SMOS
SMA due to its greater correlation with SPI and SPEI.
More extended intervals (e.g. monthly) are not useful here
due to the limited period of the SMOS dataset.
The SMA reflects the cumulative precipitation anom-

alies and is known to provide memory in the climate and
hydrological system (Anderson et al., 2012). The water
retained in the soil after a rainfall event is temporally
more persistent than the rainfall event itself (Koster and
Suarez, 2001) and has a greater persistence during periods
of low precipitation (Huang et al. 1996). This ‘memory’
effect was demonstrated herein when using indices at
different time scales. The flexibility of using multiple
time scales to calculate drought indices is highly relevant
for selecting the most appropriate time interval at which
soil moisture responds to the climate variability. Soil
moisture data tend to respond better to short time scales of
both SPI and SPEI. For the ten-day antecedent time scale
of the indices, SMOS SMA exhibits higher correlation
coefficients compared with drought indices than in situ
data (Figure 3). Increasing the time scale changes the
trend such that the in situ SMA is better matched to
the drought indices, demonstrating the capability of the
ground observations to provide a better description of the
soil moisture resilience. The SMOS data tend to respond
to drought indices on shorter time scales than the in situ
measurements, even though this response could be
misinterpreted due to the SMOS lower penetration depths
compared with the in situ measurements and the different
depths and scales of each dataset. With respect to the
SMOS SMA, the optimal antecedent period for the ten-
day SPI and SPEI that best suited the SMA is 20–30 days.
However, for the in situ SMA, the best correlation is
between 30 and 50 days. These time scales are shorter
than those characterized for stream flows, reservoir
storages and groundwater (Szalai et al., 2000; Vicente-
Serrano and López-Moreno, 2005; Fiorillo and Guadagno,
2010; Lorenzo-Lacruz et al., 2010). Typically, short time
scales of hydrological drought indices are associated with
agricultural droughts that are directly driven by shortages
Hydrol. Process. 29, 373–383 (2015)
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in the soil moisture (e.g. McKee et al., 1993; Hayes et al.,
1999), although no previously published work has demon-
strated this response using in situmeasurements. Our results
clearly illustrate this point, confirming that although
medium (6–9month) and long time scales (12–24month)
are very useful for monitoring stream flow droughts (e.g.
Vicente-Serrano and López-Moreno, 2005; Lorenzo-Lacruz
et al., 2010), shorter time scales exhibit good performance in
reproducing the temporal variability in soil moisture.
The better correlation of the SMOS SMA at the

shortest time scale could be explained by the fact that the
depth of soil that contributes to the radiometer observa-
tion becomes shallow when the near surface is wet during
and shortly after a precipitation event (Jackson et al.,
2012). After some elapsed time, the soil moisture is
distributed more uniformly throughout the soil profile. In
other words, when it is raining, the remote-derived soil
moisture content is higher than the observed at 0–5 cm
depth.Other issue includes the spatial scale of the estimations.
REMEDHUS area is equal to the SMOS footprint. Although
the DGG cells are resampled to 15km, the actual spatial
resolution is broader, in contrast with the individual in situ
monitoring sites, which lead to negligible spatial variations
in the SMOS data.
There are no remarkable differences between the use of

the SPI and the SPEI for analysing the variability of soil
moisture on a local scale in the different observatories.
This may be driven by the difficulty of recording the
influence of the involved climatic variables on a local
scale, at which particular soil characteristics and topographic
conditions may be affecting the relationships. On a regional
scale, it was revealed that soil moisture variability tends to
better respond to the SPEI than the SPI, considering both
the SMOS and in situmeasurements. Vicente-Serrano et al.
(2012) compared the performance of different drought
indices to reproduce the variability of soil moisture
observatories located around the world. They showed that,
in general, the SPEI outperforms the capacity of the SPI for
monitoring the SMA. Although precipitation is the main
variable for explaining the soil moisture variability,
evapotranspiration included in the SPEI may also be an
important variable for explaining soil moisture changes.
Thus, there is indirect evidence based on stream flow data
that suggests the influence of evapotranspiration on soil
moisture, mainly driven by global warming processes
(Walter et al., 2004; Brocca et al., 2008; Cai and Cowan,
2008; Lespinas et al., 2010).
In conclusion, this study provides preliminary but

valuable insights for future SMOS products. Satellite soil
moisture data and reasonably simple indices of surface
soil moisture conditions could be used as an additional
piece of information for assessing drought conditions that
are typically quantified using climate indices on the
regional scale. Conversely, the drought indices time series
Copyright © 2014 John Wiley & Sons, Ltd.
are suitable as proxies of soil moisture conditions in the
top layer, especially when computed over periods of
20–50 days, coinciding with several works that examine
the potential of the SMA for predicting precipitation over
regions where the land memory is long and soil moisture–
precipitation coupling is strong (Wang et al., 2007). Time
scales of longer than 60 days for the drought indices
decrease the strength of the relationships with the SMA,
especially for the SMOS dataset. The methodology
applied in this study provides empirical evidence about
the usefulness of drought indices for monitoring the SMA
and vice versa, demonstrating that the SMA mostly
responds to short drought time scales.
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